Evaluating ammonia (NH$_3$) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using *in-situ* aircraft and satellite measurements from the CalNex2010 campaign

Casey D. Braya, William Battyea, Viney P. Anejaa, Daniel Tongb,c,d, Pius Leeb, Youhua Tangb,c, John B. Nowakee

a North Carolina State University, Raleigh, NC 27695, USA
b NOAA Air Resources Laboratory, 5830 University Research Court, College Park, MD 20740, USA
c Cooperative Institute for Climate and Satellites, University of Maryland, College Park, MD 20740, USA
d Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA 22030, USA
e NASA Langley Research Center, Hampton, VA 23681, USA

Highlights

- *In situ* aircraft measurements carried out in May and June of 2010 suggest that the CMAQ model used in the National Air Quality Forecast System underestimated the NH$_3$ concentration in California by a factor of 2.4 (NMB = -58%, median ratio = 0.8).
- Average satellite-retrieved NH$_3$ levels also exceeded model predictions by a factor of 4.5 (NMB = -77%, median ratio = 3.1).
- A comparable underestimation of NH$_4^+$ by the CMAQ model, which is further controlled by factors including acid availability, removal rate, and gas-particle partition, was not observed in the study.
- The CMAQ model appeared to be the least accurate over agricultural areas, which suggests the possibility of an error within the agricultural emissions used in the model.

Abstract

Atmospheric ammonia (NH$_3$) is not only a major precursor gas for fine particulate matter (PM$_{2.5}$), but it also negatively impacts the environment through eutrophication and acidification. As the need for agriculture, the largest contributing source of NH$_3$, increases, NH$_3$ emissions will also increase. Therefore, it is crucial to accurately predict ammonia concentrations. The objective of this study is to determine how well the U.S. National Oceanic and Atmospheric Administration (NOAA) National Air Quality Forecast Capability (NAQFC) system predicts ammonia concentrations using their Community Multiscale Air Quality (CMAQ) model (v4.6). Model predictions of atmospheric ammonia are compared against measurements taken during the NOAA California Nexus (CalNex) field campaign that took place between May and July of 2010. Additionally, the model predictions were also compared against ammonia measurements obtained from the Tropospheric Emission Spectrometer (TES) on the Aura satellite. The results of this study showed that the CMAQ model tended to under predict concentrations of NH$_3$. When comparing the CMAQ model with the CalNex measurements, the model under predicted NH$_3$ by a factor of 2.4 (NMB = -58%). However, the ratio of the median measured NH$_3$ concentration to the median of the modeled NH$_3$ concentration was 0.8. When compared with the TES measurements, the model under predicted concentrations of NH$_3$ by a factor of 4.5 (NMB = -77%), with a ratio of the median retrieved NH$_3$ concentration to the median of the modeled NH$_3$ concentration of 3.1. Because the model was the least accurate over agricultural regions, it is likely that the major source of error lies within the agricultural emissions in the National Emissions Inventory. In addition to this, the lack of the use of bidirectional exchange of NH$_3$ in the model could also contribute to the observed bias.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction and background

Ammonia (NH₃) is an important gas in the atmosphere. Major sources of NH₃ include livestock, fertilizer, soil, biomass burning, industry, vehicles, the ocean, humans, and waste disposal/recycling activities, with agricultural emissions accounting for about 90% of NH₃ emissions into the atmosphere (Anderson et al., 2003; Aneja et al., 2009). As the world’s population continues to increase, the fertilizer and agricultural (both crop and animal) industries will also increase, thus leading to increasing NH₃ emissions into the atmosphere (Heald et al., 2012), which could cause a number of impacts to both human health and the environment.

NH₃ reacts with sulfuric, nitric and hydrochloric acids to form ammonium sulfate, ammonium bisulfate, ammonium nitrate and ammonium chloride aerosols, all of which contribute to the formation of fine particulate matter (PM₀.₅) (Robarge et al., 2002; Baek and Aneja, 2004; Baek et al., 2004; Renner and Wolke, 2010; Wang et al., 2012; Kwok et al., 2013). Exposure to elevated PM₀.₅ concentrations is a major concern for human health and welfare due to the particles’ ability to penetrate deep into the respiratory tract. There are many adverse health effects associated with elevated concentrations of fine particulate matter, such as cardiovascular and respiratory issues and even death (Anderson et al., 2003; Pope et al., 2009; Behera and Sharma, 2010a, b; Fan et al., 2005; Heald et al., 2012; Wang et al., 2012).

In addition, NH₃ is also important in the environment due to its role in acid deposition and the nitrogen cycle, which is one of the most important nutrient cycles for living organisms. NH₃ and ammonium (NH₄⁺) in the atmosphere are deposited to the surface via wet and dry deposition, thus increasing the amount of reduced nitrogen (Robarge et al., 2002). This could lead to a number of negative impacts on the environment, such as soil acidification, eutrophication, as well as decreasing the resistance of vegetation to drought and frost damage (Robarge et al., 2002). NH₃ in agricultural soil also plays a significant role in the formation of nitrous oxide (N₂O), a major greenhouse gas. The oxidation of NH₃ during the nitrification process can produce N₂O in a number of different pathways, such as through the denitrification process.

Due to the importance of atmospheric NH₃, it is necessary that the air quality models are able to accurately predict concentrations of NH₃. The purpose of this research is to determine how accurate the National Oceanic and Atmospheric Administration’s (NOAA) National Air Quality Forecast Capability (NAQFC), which uses the Community Multiscale Air Quality (CMAQ) model (v4.6), predicts NH₃ and ammonium concentrations during the CalNex 2010 (California Nexus) field campaign. During the CalNex2010 field campaign, in-situ measurements of pollutants were obtained via aircraft between May and July 2010, across much of California (Ryaner et al., 2013). Fig. 1 shows the flight paths taken during the field campaign.

Model predictions of NH₃ and NH₄⁺ are compared with measurements taken via aircraft as well as with satellite measurements obtained from the Tropospheric Emission Spectrometer (TES) aboard NASA’s Aura satellite in order to determine the accuracy of NOAA’s CMAQ model. Because agricultural emissions of NH₃ are difficult to quantify, there is much uncertainty in the emission inventory used by the CMAQ model. The objective of this research is to not only determine the accuracy of NOAA’s CMAQ model, but also to identify potential ways to improve the NH₃ emissions inventory used in the CMAQ model for California.

2. Methodology

2.1. Air quality model

Version 4.6 of the CMAQ model, using the CB05-AEROS chemical mechanism, was used to predict the concentrations of NH₃ and NH₄⁺ at 12 km grid resolution, from May to July 2010. The meteorological predictions used within the CMAQ model were generated by the North American Mesoscale Forecast System (NAM). The NH₃ and ammonium emissions used in the model were obtained via the 2005 US Environmental Protection Agency’s (EPA) National Emissions Inventory (NEI). The emission data used in NOAA’s NAQFC system was based on the 2005 US Environmental Protection Agency’s (EPA) 2005 National Emissions Inventory (NEI), with an update using the Cross-State Air Pollution Rule (Pan et al., 2014; Tong et al., 2015; Canty et al., 2015; Duncan et al., 2016).

2.2. Aircraft measurements

Daytime measurements of atmospheric NH₃ and NH₄⁺ from NOAA’s WP-3D aircraft from May 4th to June 20th, 2010, taken over California are used here. Gaseous NH₃ was measured using chemical ionization mass spectrometry (CIMS) at 1 Hz (~100 m spatial resolution) with typical inaccuracies ± 30% ± 0.2 ppbv and a 1 σ uncertainties of 0.08 ppbv (Nowak et al., 2010, 2012). NH₄⁺ concentrations were measured using a compact time-of-flight mass spectrometer with 2σ uncertainties of ±34% ± 0.06 µg m⁻³ (Bahreini et al., 2009, 2012; Nowak et al., 2012). NH₃ was measured every 10 s and then averaged over 1 min, while NH₄⁺ was measured every second and then averaged over 1 min (Nowak et al., 2010, 2012). The 1 min averages were compared with the model estimates. Measurements of NH₄⁺ were taken in µg standard m⁻³, where standard signifies that these measurements were taken at standard temperature and pressure, while measurements of NH₃ were taken in µg m⁻³. Therefore, for this comparison, it was necessary to convert the µg standard m⁻³ to µg m⁻³ using measurements of the ambient atmosphere that were taken during the flight. Meteorological parameters including temperature, dew point temperature, potential temperature, relative humidity, wind speed and wind direction were measured (Ryaner et al., 2013). In addition to this, the aircraft’s navigation system and global positioning system (GPS) measured the location, altitude, speed, bearing and the angle of descent were recorded. The CMAQ model predictions of NH₃ and NH₄⁺ (in µg m⁻³) were used for comparison against each 1-min aircraft measurement. The CMAQ prediction for each measurement location and time was computed by 4-dimensional interpolation across space and time, using the model grid centroids surrounding the measurement point for the hours before and after the measurement.

2.3. Satellite measurements

Predictions from the CMAQ model were also compared against satellite NH₃ concentrations retrieved from infrared spectra gathered by the Tropospheric Emission Spectrometer (TES) on the National Aeronautics and Space Administration’s (NASA) Aura satellite. TES is a high spectral resolution infrared Fourier Transform spectrometer (FTS) (Beer, 2006) that covers the spectral range 650–3050 cm⁻¹ (Bowman et al., 2006). TES has a spatial resolution of 5.3 × 8.5 km nadir and 37 × 23 km limb and has a spectral resolution of 0.5 × 5 km nadir and 2.3 × 23 km limb (Beer et al., 2001; Zhu et al., 2013). TES measures the Earth’s infrared light energy and follows a sun-synchronous orbit,
making observations on a 16-day cycle, with roughly 1 pass during the day and 1 pass during the night over each region every other day (Clarisse et al., 2010; Zhu et al., 2013). Atmospheric ammonia concentrations are derived from TES by observing changes in the infrared radiation intensity between 940 cm\(^{-1}\) and 970 cm\(^{-1}\). The TES ammonia retrievals use a forward radiative transfer model (RTM) to compute the expected intensity of radiation at the top of the atmosphere for an estimated ammonia concentration. The assumed concentration of ammonia is varied to minimize the error between the spectrum predicted by the RTM and the spectrum actually measured by the satellite. This results in an estimate of the vertical profile of the ammonia concentration for the region sensed by the satellite. (Bowman et al., 2006; Shephard et al., 2011; Shephard and Cady-Pereira, 2015). Finally, the meteorological conditions (temperature, relative humidity, etc.) are used with the a priori NH3 profile to estimate the atmospheric NH3 concentration (Herman and Osterman, 2014).

TES performed 6 transect measurements over the CalNex study domain between May 7, 2010, and June 3, 2010. In order to compare with the CMAQ model predictions, the NH3 concentration for the aircraft sampling height was extracted from the total column data based on the assumed a priori profile. This study used only measurements that met TES Species Retrieval Quality criteria and for which the degrees of freedom for signal (DOFS) exceeded 0.5. It is important to note that there are some uncertainties associated with this data. For example, the satellite retrieval of ammonia concentration may be biased toward the a priori assumption. In addition to this, the estimated vertical distribution of ammonia is also impacted by the a priori assumption made.

2.4. Model to measurement comparisons

Similar to the work of Battye et al. (2016), the normalized mean bias (NMB) was calculated using the following equation:

\[
NMB = \frac{1}{N} \sum_{i=1}^{N} \frac{C_{\text{mod}}(i) - C_{\text{obs}}(i)}{C_{\text{obs}}(i)},
\]

in order to determine the accuracy of the NAQFC CMAQ model. The ratio of the average measured concentration to the average model prediction (\(R_{\text{o/m}}\)) was calculated using:

\[
R_{\text{o/m}} = \frac{\sum_{i=1}^{N} C_{\text{obs}}(i)}{\sum_{i=1}^{N} C_{\text{mod}}(i)},
\]

where \(C_{\text{mod}}(i)\) is the model prediction, \(C_{\text{obs}}(i)\) is the observed concentration at a given location and time, and \(N\) is the number of observations. The relationship between NMB and \(R_{\text{o/m}}\) is as follows:

\[
NMB = \frac{1}{R_{\text{o/m}}} - 1.
\]

3. Results and discussion

3.1. Aircraft measurements compared with model predictions

Table 1 compares the aircraft measurements of NH3 and NH4 taken during the field campaign with the model predictions.
predicted by NOAA’s CMAQ model and the calculated NHx (NH3 (g) + NH4 (p)) concentrations. The average concentration of the 1-min averaged NH3 observations in the CalNex field campaign was 4.1 ± 14.8 ppbv (2.7 ± 9.9 µg m⁻³), with a maximum 1-min average concentration of 380.1 ppbv (254.7 µg m⁻³) and a maximum 1-s concentration of 963 ppbv (669 µg m⁻³). In contrast to this, the model predicted an average NH3 concentration of 1.7 ± 2.4 ppbv (1.1 ± 1.4 µg m⁻³), with the maximum predicted NH3 concentration at 17.3 ppbv (11.3 µg m⁻³). Thus, the measured concentration of NH3 was a factor of 2.4 higher than what was modeled by the CMAQ forecasting model, with a normalized mean bias of ~58%.

In order to take out the influence of the outlier data points, the median was also calculated for the modeled and measured NH3 concentration. The median NH3 concentration measured in the field campaign was 0.8 ppbv (0.5 µg m⁻³), while the median modeled concentration was 0.9 ppbv (0.6 µg m⁻³). The ratio of the measured median concentration and the modeled median concentration of ammonia is 0.8, which suggests that the model is fairly accurate without the influence of the elevated outlier NH3 concentrations observed in the field campaign.

Fig. 2 shows the measured concentrations of NH3 (y-axis) compared with the model predictions of NH3 (x-axis) on a log-log scale plot, with the plotted measurements represented as the blue dots, the gold line representing the actual measured trend line, the cyan-green line representing the bias line given by the ratio of the medians and the red line representing where the measured points would have fallen if the model correctly predicted the measurements. The log-log plot was chosen for this figure due to the large range observed in measured ammonia concentrations. When comparing the actual trend line with the modeled one-to-one line (i.e. when the measured = modeled), it appears that the model under predicts concentrations of NH3 by a factor of 2.4. However, when comparing the one-to-one line with the bias line given by the median ratio, it appears that the model only under predicted NH3 concentrations by a factor of 0.8.

The average NH4 concentration for the CalNex study area was found to be 0.4 ± 0.7 µg m⁻³, with a maximum concentration of 6.7 µg m⁻³. In comparison, the CMAQ model predicted an average NH4 concentration of 0.6 ± 0.8 µg m⁻³, with a maximum predicted concentration of 7.3 µg m⁻³. The concentration of NH4 for the study area was found to be a factor of 0.7 lower than the prediction made by the CMAQ model and the calculated normalized mean bias was found to be 43%.

When comparing the median values of the measured and modeled data, the measured NH4 median was 0.2 µg m⁻³ and the modeled NH4 median was 0.3 µg m⁻³. This corresponds to a ratio of the measured to modeled median concentration of 0.7, which is equivalent to the ratio of the modeled to measured concentration. Fig. 3 shows the comparison of the measured concentration of NH4 compared with the modeled concentrations, plotted with the observed trend line (gold) and the one-to-one line (red). It is necessary to note that the bias line given by the median ratio is not shown because it is equivalent to the observed trend line. Because both the modeled and measured ammonium concentrations were less than 10 µg m⁻³, this figure was plotted on a linear scale as oppose to a log-log scale. Unlike the comparison with NH3 concentrations, the modeled NH4 concentrations were fairly close to the measurements made, with the model slightly over predicting, particularly at higher concentrations of NH4. This suggests that the model had a fairly good handle on the conversion of gaseous NH3 to particulate ammonium and thus the conversion was likely not limited by the concentration of gaseous NH3.

The average concentration of NHx measured during the field campaign was 3.1 ± 10.6 µg m⁻³, with a maximum concentration of 254 µg m⁻³. In comparison to this, the CMAQ model predicted an average concentration of 1.7 ± 2.2 µg m⁻³. The maximum predicted NHx concentration was 11.5 µg m⁻³. The measured concentration of NHx was found to be a factor of 1.9 higher at very low concentrations (<10⁻⁰.⁵) of NH3 than what was predicted by the CMAQ model and a factor of 1.9 lower than what was predicted by the CMAQ model at higher concentrations. The average measured to modeled ratio of 1.9 corresponds to a normalized mean bias of ~44%. However, comparing the medians of the measured and modeled NHx concentration, the medians were found to be 1 µg m⁻³ and 1.2 µg m⁻³, respectively. This corresponds to a median ratio of 0.8, which is lower than the ratio that was observed when comparing the average modeled NHx concentrations with the average measured NHx concentrations. Fig. 4 shows the comparison of the measured concentration of NHx compared with the modeled concentrations on a log-log scale plot. Similar to Fig. 2, this was also plotted on a log-log due to the large range in measured NHx concentrations. As described above, this figure shows the model tends to under predict concentrations of NHx at higher concentrations of NHx and the model tends to over predict concentrations of NHx at lower concentrations. However, when comparing the bias line of the median ratio (cyan-green line) with the one-to-one line (red

Table 1
Comparison of in situ aircraft measurements with model predictions for NH3, NH4, and NHx.

<table>
<thead>
<tr>
<th></th>
<th>NH3 (ppbv)</th>
<th>NH3 (µg m⁻³)</th>
<th>NH4 (µg m⁻³)</th>
<th>NHx (µg m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>4.1</td>
<td>2.7</td>
<td>0.4</td>
<td>3.1⁺</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>14.8</td>
<td>9.9</td>
<td>0.7</td>
<td>10.6⁺</td>
</tr>
<tr>
<td>Maximum</td>
<td>380.1</td>
<td>254.7</td>
<td>6.7</td>
<td>254⁺</td>
</tr>
<tr>
<td>Median</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Model predictions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>1.7</td>
<td>1.1</td>
<td>0.6</td>
<td>1.7⁺</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>2.4</td>
<td>1.4</td>
<td>0.8</td>
<td>2.2⁺</td>
</tr>
<tr>
<td>Maximum</td>
<td>17.3</td>
<td>11.3</td>
<td>7.3</td>
<td>11.5⁺</td>
</tr>
<tr>
<td>Median</td>
<td>0.9</td>
<td>0.6</td>
<td>0.3</td>
<td>1.2⁺</td>
</tr>
<tr>
<td>Comparison statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalized mean bias</td>
<td>-58%</td>
<td>43%</td>
<td>-44%</td>
<td></td>
</tr>
<tr>
<td>Ratio of average measured value to average modeled value</td>
<td>2.4</td>
<td>0.7</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Ratio of median measured value to median modeled value</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Correlation coefficient (r²)</td>
<td>0.34</td>
<td>0.62</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Coefficient of determination (r²)</td>
<td>0.12</td>
<td>0.38</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Number of observations</td>
<td>8181</td>
<td>4605</td>
<td>4605</td>
<td></td>
</tr>
</tbody>
</table>

* Denotes calculated value, not measured.
it appears that the measured values are fairly close to the modeled projections.

Fig. 5 shows a histogram comparing the modeled and measured NH$_3$ concentrations. The extreme values measured during the field campaign are significantly higher than the extreme values predicted by the model. While both the modeled and measured concentrations show a similar negative pattern, where the number of observations is highest at the lowest concentration and then rapidly decreases thereafter, the slope of the decrease is significantly different. The number of observations from the field campaign gradually decreases with increasing ammonia concentrations while the number of modeled observations drop exponentially with increasing ammonia concentrations, such that there are no observations above 30 µg m$^{-3}$. The 98th percentile of the measured NH$_3$ values was found to be 23.2 µg m$^{-3}$ while the 98th percentile of the modeled NH$_3$ values was 5.1 µg m$^{-3}$, showing the vast under estimation of NH$_3$ concentrations by the model.

Spatial patterns in the model prediction error were identified by comparing the model bias (model concentration – measured concentration) in relation to NH$_3$ point sources and agricultural
sources. Fig. 6 plots both the agricultural and point source emissions (obtained from the US EPA's National Emissions Inventory) with relation to the model bias. Fig. 6A shows all the calculated model bias for the period while Fig. 6B only shows model bias over 50 ppbv.

The majority of the high model biases occur over large agricultural regions and the highest model bias occurs over point sources. This suggests that the 2005 NEI under predicts NH₃ concentrations within this region of California. When comparing the 2005 NEI NH₃ emissions with the 2011 NH₃ NEI emissions for the study domain, it is found that there is a 25% increase in the NH₃ emissions, which would certainly account for some of the observed bias. However, the 2014 NEI NH₃ emissions, which uses an entirely different methodology for their agricultural emissions, are 62% higher than the 2011 NEI NH₃ emissions and 85% higher than the 2005 NEI NH₃ emissions (EPA, 2005; EPA, 2011; EPA, 2014). According to the US EPA 2014 National Emissions Inventory (version 1) Technical Supporting Document, this version of the NEI has updated the agricultural livestock ammonia methodology in order to incorporate both new observational data as well as new process based methods. In addition to this, the methodologies used to develop emissions from fertilizer application have been entirely changed. For example, in this inventory, ammonia emissions from agricultural soils are estimated using the bidirectional version of the CMAQ model (v5.0.2) coupled with the Fertilizer Emissions Scenario Tool for CMAQ FEST-C (v1.2) (EPA, 2016). Based on this, it is likely that the agricultural emissions used in the model contributed to much of the biases observed in this study.
Fig. 6. The agricultural and point source emissions (obtained from the US EPA’s National Emissions Inventory) plotted with relation to the model bias. Fig. 6A shows all the model biases obtained from the CalNex study while Fig. 6B shows only the largest model bias. Note that major under estimates occurred in close proximity to both NH3 point sources as well as agricultural sources of NH3.
Table 2: Comparison of CMAQ model predictions at the aircraft level and the total column loading with the corresponding TES retrievals for NH$_3$.

<table>
<thead>
<tr>
<th></th>
<th>NH$_3$ At Aircraft Level (µg m$^{-3}$)</th>
<th>NH$_3$ Total Column Loading (mg m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TES retrievals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>14.8</td>
<td>7.2</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>11.8</td>
<td>6.7</td>
</tr>
<tr>
<td>Maximum</td>
<td>40.5</td>
<td>40.4</td>
</tr>
<tr>
<td>Median</td>
<td>10.4</td>
<td>5.1</td>
</tr>
<tr>
<td>Model predictions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>3.3</td>
<td>0.002</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.0</td>
<td>0.002</td>
</tr>
<tr>
<td>Maximum</td>
<td>4.9</td>
<td>0.008</td>
</tr>
<tr>
<td>Median</td>
<td>3.4</td>
<td>0.002</td>
</tr>
<tr>
<td>Comparison statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalized mean bias of TES retrieval</td>
<td>-77%</td>
<td>-99%</td>
</tr>
<tr>
<td>Ratio of average TES retrieval value to average modeled</td>
<td>4.5</td>
<td>3600</td>
</tr>
<tr>
<td>Ratio of median measured value to median modeled value</td>
<td>3.1</td>
<td>2550</td>
</tr>
<tr>
<td>Correlation coefficient (r)</td>
<td>0.28</td>
<td>0.54</td>
</tr>
<tr>
<td>Coefficient of determination (r^2)</td>
<td>0.08</td>
<td>0.30</td>
</tr>
<tr>
<td>Number of observations</td>
<td>12</td>
<td>66</td>
</tr>
</tbody>
</table>

![Fig. 7A](image1.png) The CMAQ model prediction of NH$_3$ compared with the TES satellite retrieval at the aircraft measurement level plotted on a log-log scale plot (A) and the model the total column loading compared with the TES total column loading retrieval (B). The red line in Fig. 7A shows where the TES retrieval points should have fallen if the model predictions were exactly correct. Looking at the order of magnitude, it is evident that the modeled ammonia concentrations were much lower than the retrieved ammonia concentrations at the aircraft height. This was also found when comparing the modeled total column loading of ammonia with the total column loading of ammonia retrieved by TES. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Another potential cause for the discrepancies between the model and the measured values could be the NEI's handle on the diurnal and seasonal representation of ammonia emissions in this region. However, it is important to note that the diurnal representation of ammonia emissions has been updated within the Sparse Matrix Operator Kernel Emissions (SMOKE) model and this has been released in the newer (2011, 2014) versions of the NEI (Zhu et al., 2015).

3.2. Model predictions compared with satellite retrievals

The CMAQ model prediction of NH₃ was compared with the TES satellite retrieval of concentrations measured at the CalNex aircraft measurement heights (Table 2, Fig. 7A). The average TES NH₃ concentration was 14.8 ± 11.8 μg m⁻³, with a maximum measured concentration of 40.5 μg m⁻³ and a median concentration of 10.4 μg m⁻³, while the associated average CMAQ model concentration was found to be 3.3 ± 1.0 μg m⁻³, with a maximum predicted concentration of 4.9 μg m⁻³ and a median concentration of 3.4 μg m⁻³. As Fig. 7A shows, the majority of the NH₃ retrieval measurements fall above the one to one line (where the modeled NH₃ = the TES NH₃ retrieval), which suggests that the TES retrieval measurements are higher than the Concentrations predicted by the model. This normalized mean bias of the TES retrieval was found to be −77%, which corresponds to a ratio of the average measured NH₃ value to the average NH₃ TES retrieval of 4.5. Similarly, the ratio of the median measured value to median modeled value was 3.1. The average total column loading (mg m⁻²) measured by TES was 7.2 ± 6.7 mg m⁻², with a maximum total column loading of 40 mg m⁻² and a median value of 5.1 mg m⁻². In contrast to this, the average total column loading predicted by the CMAQ model was 0.002 ± 0.002 mg m⁻², with a maximum total column loading of 0.008 mg m⁻² and a median of 0.002 mg m⁻² (Table 2, Fig. 7B). This corresponds with a NMB of −99% and a ratio of the average measured NH₃ value to the average NH₃ TES retrieval 3600. The ratio of the median measured value to median modeled value was 2550. Because the satellite samples a larger volume of air than the CIMS, it is expected that the retrieved range of concentrations of ammonia would be narrower than those observed by the aircraft due to the fact that there is much more variability on a smaller spatial scale. In addition to this, it would follow that the satellite retrievals would also be lower than those observed by the aircraft (assuming the aircraft was targeting emission sources), due to the fact that the concentration of atmospheric ammonia drops exponentially with increasing distance from the source, thus returning values that are similar to the volume modeled by CMAQ. While the authors tried to pair the CMAQ/aircraft measurement data with the TES retrievals such that they were as close as possible, a potential reason for the discrepancies between the TES NH₃ retrieval and the CMAQ model estimates, could be due to the fact that the measurements did not align 100% in time and space.

3.3. Satellite retrievals compared with in-situ aircraft measurements

In this study, only 12 satellite retrievals with adequate data quality lined up with the aircraft measurements taken during the CalNex study (Fig. 8), therefore limiting the results. Table 3 and Fig. 9 compare the in-situ aircraft measurements with the satellite observations obtained from TES. The average corresponding NH₃ concentration measured from the CalNex campaign was found to be 33.1 ± 35.5 μg m⁻³, with a maximum NH₃ concentration of 108.8 μg m⁻³ and a median value of 10.2 μg m⁻³. In comparison to this, the average TES NH₃ concentration was 14.8 ± 11.8 μg m⁻³, with a maximum measured concentration of 40.5 μg m⁻³. However, the median value observed for the TES NH₃ concentration was 10.4 μg m⁻³, which is similar to that of the NH₃ aircraft measurements median. Thus, the ratio of the median measured value to the median modeled value is 0.98. As Fig. 9 shows, the majority of the NH₃ measurements fall above the one to one line. This normalized mean bias of the TES retrieval was found to be −55%, which corresponds to a ratio of the average measured NH₃ value to the average NH₃ TES retrieval of 2.2. The median of the in-situ aircraft measurements was 10.2 μg m⁻³, while the median of the CMAQ measurements was 10.4 μg m⁻³, which corresponds with a median ratio of 0.98. As mentioned in the previous section, a source of error when comparing the TES retrieval with the CMAQ data is the fact that the two data sources were not entirely aligned in both space and time.

3.4. Analysis of model bias in relation to previous studies and the NH₃ emissions inventory

Several studies have been conducted to determine how well the CMAQ model can predict NH₃ concentration. In general, it has been found that the CMAQ model has a tendency to under predict NH₃ concentrations, particularly over large source regions (Gilliland et al., 2006; Kelly et al., 2014; Butler et al., 2014; Schiferl et al., 2016; Battye et al., 2016), Gilliland et al. (2006) used an inverse modeling technique with CMAQ v4.4 to predict NH₃ emissions for the continental United States (CONUS). The results of this study indicated that the emissions inventory is too high for the winter months and too low for the summer months. Similar results were found by Butler et al. (2014), who used CMAQ v4.7.1 to predict NH₃ concentrations in Susquehanna River Watershed of New York and Pennsylvania. When comparing ambient concentration measurements of NH₃ with the model predictions, it was found that the model under estimated concentration by 8–60%. In addition to this, it was also found that the NH₃ under estimations were particularly high over the agricultural regions. Kelly et al. (2014) found similar results when comparing NH₃ measurements obtained from the California Research at the Nexus of Air Quality and Climate Change (CalNex) field campaign that occurred May–June 2010, with model predictions from CMAQ v5.0.2. In addition to this, it was also found that the CMAQ model also predicted lower concentrations of NH₃ in some urban regions as well. Battye et al. (2016) found comparable results to Kelly et al. (2014) when comparing NH₃ measurements from the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) field campaign (July–August 2014) with NOAA's
NAQFC CMAQ model (v5.0.2) over the agricultural regions of northeastern Colorado. Schiferl et al. (2016) used GEOS-Chem (v9-02, driven by GEOS-5 assimilated meteorology) to simulate concentrations of atmospheric ammonia across the United States from 2008 to 2012 and found that the model tended to under predict ammonia concentrations near large source regions, under predicting concentrations by 26% when compared with surface sites. The current study found similar results to Gilliland et al. (2006),
Kelly et al. (2014), Butler et al. (2014), Schiferl et al. (2016) and Battye et al. (2016), where the CMAQ model (v4.6) underestimates NH$_3$ concentrations, with the results being most comparable to Kelly et al. (2014) and Battye et al. (2016).

Meteorological factors can have a major impact on the emission and removal processes of ammonia. Both wind speed and relative humidity have been found to be inversely proportional to ammonia concentrations (Flechard and Fowler, 1998; Kapoor et al., 1992; Parmar et al., 2001; Phillips et al., 2004; Sharma et al., 2010, 2011), while temperature was primarily found to be directly proportional to ammonia concentrations (Flechard and Fowler, 1998). Ammonia concentrations tend to be lower during clear skies and when precipitation occurred (Kapoor et al., 1992). Schiferl et al. (2016) also notes the importance of meteorology in atmospheric air quality. They found that meteorology contributed to 64% of the changes in the surface concentration of ammonia when compared with reductions air pollution. Therefore, errors in the meteorology used within the CMAQ model could have contributed to the large under estimations observed in this study.

Another potential source of error in NH$_3$ predictions is the absence of the bidirectional flux model within the CMAQ version used. Cooter et al. (2012) and Bash et al. (2013) found that the use of the bidirectional flux in the model increases NH$_3$ concentrations on average by about 10% over the continental US. It is important to note that the flux will likely be higher over agricultural regions due to the abundance of NH$_3$ in the agricultural cropping system. Error in the model processes used to handle NH$_3$ emissions may also contribute to the observed bias. For example, the 12 km spatial resolution may lead to the model overlooking high concentrations that are smaller than the grid size. However, the similar results found by Kelly et al. (2014), who used an updated version (5.0.1) of the CMAQ model with a 4 km vertical resolution and 34 vertical layers, suggest that this is not entirely the cause of the under estimation. Another likely source of error is the use of older National Emissions Inventories (NEI). For example, Gilliland et al. (2006) used the 2001 NEI while Battye et al. (2016) and this current study used the 2005 NEI. Recall from the above discussion that the NH$_3$ emissions increased 25% between the 2005 and 2011 (EPA, 2005; EPA, 2011). In contrast to this, NH$_3$ emissions increased 85% from the 2005 NEI to the 2014 NEI after major changes were made to the methodologies used to calculate the agricultural emissions of ammonia. In addition, it is possible that an increase in animal activity could have contributed to the increase in NH$_3$ emission. Because the majority of the under estimations, both in this study and the literature, tend to occur over agricultural regions, it is likely that a major contributor to this under estimation of NH$_3$ concentrations is due to an under estimation of NH$_3$ emissions from agricultural sources in the US National Emissions Inventories used in most research (i.e. inventories that are older than the current 2014 NEI).

4. Conclusion

The NOAA NAQFC CMAQ model under predicted NH$_3$ concentrations in California measured during the CalNex2010 field campaign by a factor of 2.4 (NMB = −58%), with a median ratio of 0.8. Similarly, the NOAA NAQFC CMAQ model under predicted NH$_3$ concentrations in California by a factor of 4.5 (NMB = −77%), with a median ratio of 3.1, when compared with measurements obtained from TES. In contrast to this, the CMAQ model had a fairly good handle on NH$_4^+$ concentrations, only over predicting by a factor of 0.7 (NMB = 43%), with a median ratio of 0.7. When comparing the median values for NH$_3$ and NH$_4^+$, it was found that the median values were fairly similar for both modeled and measured values. Despite the model under estimating NH$_3$ concentrations, particularly at high concentrations the NH$_4^+$ projections were fairly accurate, which suggests that the issue lies within the prediction of gaseous NH$_3$. These results indicate that while the NOAA CMAQ model represents the partitioning of NH$_3$, there is still uncertainty in predicting concentrations of gaseous NH$_3$. This also suggests that the NH$_3$ levels in California exceed the levels of the acidic species necessary for the gas-to-particle conversion. Therefore, this will have major implications for PM$_{2.5}$ reduction strategies. In addition to this, it is important to note that a portion of the error in comparing the TES retrieval measurements with the CMAQ model prediction is likely due to the fact that the retrieval and the predicted concentration did not line up completely in space and time.

Recall that there are at least four potential sources of error within the CMAQ model: the lack of the inclusion of the bidirectional flux model, potential errors in the model processes used, errors within the NH$_3$ emissions used in the model and errors in the meteorology used within the models. The addition of bidirectional flux to the model would increase NH$_3$ emissions, particularly over the agricultural regions, and therefore likely contributes to the model bias observed in this study. Similarly, ammonia emissions in the 2014 NEI increased 85% from the emissions calculated by the 2005 NEI, primarily due to the update in the methodologies used to calculate agricultural emissions of ammonia. Because the majority of the highest model bias occur in areas of agriculture, it is likely that a major part of the problem lies within the agricultural emissions of NH$_3$ in the 2005 NEI. Other potential sources of the observed bias include the changes made to the diurnal and temporal representation of ammonia emissions within the NEI as well as errors with the meteorology used within the models. Based on the results of this study, it seems that the two major sources of error within the model lies with the 2005 NEI NH$_3$ emissions and the lack of the bidirectional flux model used in the model.

Acknowledgements

We acknowledge the generous help and guidance of Dr. Andy Neuman (NOAA), Dr. Ann Middlebrook (NOAA) and Dr. Roya Bahreini (UCR), the NCSU Air Quality Research Group, the NOAA National Air Quality Forecast Program, and the CalNex2010 field campaign. The ammonia satellite data was retrieved from NASA TES instrument on the Aura satellite. We would also like to acknowledge the Kenan fund.

References

Battye, R., Middlebrook, A.M., Gouw, J.A.D., Neuman (NOAA), Dr. Ann Middlebrook (NOAA) and Dr. Roya Bahreh

